Selective gas absorption at the touch of a button – without any heat

A research team at TU Darmstadt has developed a new type of composite material made from carbon and silicon dioxide. This material selectively binds gases such as CO₂, N₂, and argon from the air and can completely release them simply by applying or removing a low electrical voltage.

The interfaces created in the millimeter range between the conductive and insulating materials generate strong field gradients. These gradients polarize the gaseous molecules, allowing them to adhere to the surface in a completely reversible manner. This technology enables low-energy swing adsorption and desorption, paving the way for efficient separation processes in gas purification.

The results of this research were published in the journal Advanced Science under the title “Interface Controlled Electric Field Swing Adsorption.”

 

Original publication:

Silvio HeinschkeJörg J. Schneider; Interface Controlled Electric Field Swing Adsorption. Advanced Science (2025); DOI: 10.1002/advs.202504617

Bildschirmfoto des internetauftritts zum vorgestellten Paper

Weitere News

Nahaufnahme von Händen, die auf einem Laptop tippen, mit einem leuchtenden Cloud-Symbol und digitalen Datenflusssymbolen, die die Cloud-Computing-Technologie darstellen. Bildquelle: Ar_TH -stock-adobe.com

A collection of open FAIR datasets for titanium dioxide coated photocatalytic surfaces This article presents a large-scale collaboration within a...

Titelblatt Nanosafety Buch 2025

Nanosafety – A Comprehensive Approach to Assess Nanomaterial Exposure on the Environment and Health   Brand new open access book...

Team at work, Tisch, Labtops, Diskussionen. Bildquelle: gstockstudio - stock.adobe.com

Scientific methods and findings are often not directly suitable for regulation unless they are appropriately prepared and standardized. However, researchers...

Skip to content