Search
Close this search box.

FAQs

Definitions

  • Are nanomaterials more dangerous compared to micro- and larger particles?

    Nanomaterials have unique properties, which make them so interesting for many novel applications. At the same time, concerns arose, whether these new properties lead to unexpected hazard towards humans and the environment. Many research activities were performed to tackle this question. So far, no unique mechanisms of hazard exclusively occurring for nanomaterials were discovered. The toxicity of a substance is rather determined by the type of material than by its size.

  • Are nanomaterials per se toxic or dangerous?

    No, they are not. The size of a material alone does not determine its toxicity. Most substances exerting hazardous effects in the nano-size show the same toxic effects for larger sizes / bulk material. However, the exposure and distribution within organisms may differ, e.g. nanomaterials can reach deeper regions of the lung upon inhalation whereas this is not possible for larger particles.

  • What is a nanomaterial?

    UPDATE!

    In 2011, the European Commission published a first common definition of the term "nanomaterial" (2011/696/EU). This was updated in 2022:

    ‘Nanomaterial’ means a natural, incidental or manufactured material consisting of solid particles that are present, either on their own or as identifiable constituent particles in aggregates or agglomerates, and where 50% or more of these particles in the number-based size distribution fulfil at least one of the following conditions:

    1. one or more external dimensions of the particle are in the size range 1 nm to 100 nm;
    2. the particle has an elongated shape, such as a rod, fibre or tube, where two external dimensions are smaller than 1 nm and the other dimension is larger than 100 nm;
    3. the particle has a plate-like shape, where one external dimension is smaller than 1 nm and the other dimensions are larger than 100 nm.
    4. In the determination of the particle number-based size distribution, particles with at least two orthogonal external dimensions larger than 100 μm need not be considered.

    However, a material with a specific surface area by volume of < 6 m2/cm3 shall not be considered a nanomaterial.

    https://ec.europa.eu/environment/chemicals/nanotech/pdf/C_2022_3689_1_EN_ACT_part1_v6.pdf

  • How big is a nanometer?

    Size comparison VIrus DNA Fullerene CNT English
    Size comparison Virus DNA Fullerene CNT

    The term „nano“ derives from the greek word nanos, dwarf. A nanometer is one millionth of a milimeter. It is equal to 1/1,000,000,000th or one-billionth of a meter. When things are this small, you can't see them with your eyes, or a light microscope. Objects this small require a special tool called electron microscope (EM) or scanning probe microscope (SEM).

    Nanoparticles range in size from 1 nm to 100 nm.

    All these naturally and synthetic things are on the nanometer scale: Virus (30-50 nm), DNA (2.5 nm), buckyballs (~1 nm in diameter), CNT (~1 nm in diameter).

  • What are nanoparticles?

    A material is called a nano-object when one, two or three external dimensions of it are present in nanoscale. This includes nanoparticles, i.e. nano-objects with all three external dimensions on the nanoscale. Nano-platelets are nano-objects with one external dimension on the nanoscale, and two much larger external dimensions. Nanofibers have two similar external dimensions on the nanoscale, and a third external dimension that is much larger than the other two dimensions.

    These definitions were developed in 2008 by the Technical Committee ISO/TC 229 "Nanotechnologies" in collaboration with the Technical Committee CEN/TC 352 "Nanotechnologies".

    Nanoparticles can be of different chemical nature. Both inorganic and organic nanoparticles are known. They can consist of only one element, i.e. metal or carbon or of compounds like oxides, nitrides, etc. Nanocomposites are understood to be composite materials that have at least one component in the form of a nano-object. Nanoparticles often build clusters of aggregates or agglomerates. By contrast to aggregates, agglomerates can be ground into the primary grains through optimal mixing. Therefore, their shape can be very inconsistent and they may take a wide variety of forms which has considerable influence on their properties. In principle, because of their enormous surface-to-mass ratio nanoparticles behave completely different than larger composites.

Workplace

  • Which mask should I buy if I want to protect myself against Nano dust?

    If protective technical measures against unintentional release of nanomaterials at the workplace are NOT sufficient, the German Social Accident Insurance (DGUV) recommends the use of personal respiratory protection (filter class P3 or P2). When selecting the personal respiratory protection device, the previous risk assessment for the work place has to play a major role. If the wearing of a breathing mask is required, it has to be fitted tightly to the face or head. Likewise, current time limits and regulations for the wearing of breathing masks have to be respected. Besides personal protection, teaching and training of employees on the correct use is important too.

  • Who is responsible for occupational safety in the handling of nanomaterials, and where can I find relevant information?

    Safety at the workplace is the responsibility of the employer. He is responsible for all basic trainings, assessment & management of risks and potential hazards at the workplace as well as the implementation of the associated protective safety measures. The employee has to act safely in accordance with the training and has to inform the employer about any possible further risks. The European legislation on worker protection also applies to nanomaterials. Similarly to the handling of other hazardous substances, the same prevention measures ("STOP") following the hierarchy of control are relevant:

    1. Substitution
    2. Technical control measures at the source
    3. Organisational measures
    4. Personal protection equipment

    Further information on this topic of nanomaterials and occupational health & safety can be found on the websites of the appropriate authorities, insurers or the European Agency for safety and health at work (EU-OSHA).

     

    Germany

    Switzerland

    Austria

    European Union

     

     

  • Occupational exposure limits & protective measures for nanomaterials: national and european regulations

    Up-to-now, there are no European occupational exposure limits in place. However, the establishment of such values is an ongoing process. So far, health and safety measures for the handling of nanomaterials are based on the precautionary principle of existing knowledge derived from safety measures for handling chemicals. This includes in particular the avoidance of contact with the particles (exposure) and the use of personal protective equipment (for example, respiratory protection, protective gloves).

    In Germany, the Federal Institute for Occupational Safety and Health (BAuA) is dealing with the topic of nanosafety at the workplace; in Switzerland, the Federal Office of Public Health (FOPH) has created a precautionary matrix for synthetic nanomaterials.

    Links:

     

Application/Products

  • What are solid-state batteries?

    In solid-state batteries, both electrodes and the electrolyte consist of solid material. Although some solid-state batteries are already in use in electric cars or trucks (e.g. in the "Bollore Blue Car"), most are currently still under development.

    The advantages of all-solid-state batteries (ASSB) over the common liquid electrolyte batteries are the replacement of the (usually highly flammable) liquid electrolyte by a solid electrolyte. Furthermore, solid-state batteries have a higher energy density and a faster charging capacity, which is an important property for the rise in electromobility.

    Different materials such as polymers, metals and ceramics are used in various combinations for solid-state batteries.

  • What are liquid electrolyte batteries?

    Liquid electrolyte batteries have been used for many years and are currently the most commonly used batteries, e.g. lithium ion batteries (LIB) in mobile phones. In liquid batteries, the electrolytes are present in dissolved form, but the electrodes are made of a solid material. The liquid electrolytes are usually highly flammable, which is often seen as a disadvantage. Therefore, solid-state batteries are currently being developed in which the electrolytes are in solid form.

  • What types of liquid electrolytes are there?

    Liquid electrolytes are mostly water-based salt solutions consisting of organic and inorganic acids. However, simple saline solutions can also be used.

  • What types of rechargeable batteries (secondary batteries) are there and where are they used?

    There are a variety of rechargeable batteries or secondary batteries, which can be roughly divided into liquid electrolyte batteries (also called wet cell) and solid-state batteries. Generally, they consist of 2 electrodes and an electrolyte, each of which can be made of different materials.

    The majority of batteries in use today and in the near future are liquid electrolyte batteries, mainly lithium ion batteries.

    Some solid-state batteries are already in use, most others are currently in basic research. Materials used are, for example, sodium, magnesium or aluminium.

  • What is the difference between perovskite and conventional solar cells?

    Conventional solar cells are often made of silicon dioxide, which is used in amorphous or crystalline form. It takes a lot of know-how and money to produce it, and the yield of light energy conversion in commercial products is less than 25% [1]. Therefore, solar cells are also made from other elements. Among the most prominent representatives here are GaAs (gallium arsenide), CdTe (cadmium tellurium) and CIGS (copper indium gallium selenium) solar cells. These elements are controversial, as some are e.g. toxic, only difficult to obtain from socially / ethically acceptable sources and usually very expensive.

    Therefore, sustainable alternatives are being sought: perovskite solar cells could be cheaper to produce and the starting materials easier to obtain. However, they also contain toxic elements (status 2022). Intensive research is therefore being conducted into less toxic perovskite solar cells. Good luminous efficiencies have already been achieved in the laboratory, and in particular the possibility of building semi-transparent cells could lead to very high yields in light energy conversion if perovskite and conventional solar cells are arranged one above the other (tandem solar cell or multi-junction solar cell).

     

    Further infomation

  • How can you produce safe nano-textiles?

    The Swiss project NanoSafe Textiles has carefully assessed current and future applications of synthetic nanoparticles in textiles and evaluated their potential risks for the environment and humans throughout the complete lifecycle. Based on these results the project team compiled a guideline for the textile industry on how to produce safe, sustainable and economically attractive nano-enhanced textiles.

    • The guideline together with further information on this topic "nano in textiles" can be found in our cross-cutting section!!!
  • Graffiti protection and easy-to-clean surfaces – how does that work and is it safe?

    Special coatings are used to generate self-cleaning surfaces or anti-graffiti-protection. The coatings are virtually invisible and protect the base material without changing its appearance. Adherence of dirt particles on such smooth, non-sticky and water- repellent surfaces (on facades, windows, walls, vehicles) is very poor which is why they can easily be rinsed off and removed. A universal protection coating does not exist due to the large variety of base materials but the coating is individually adapted to the respective system.

    When processing and applying the various coatings, the same protective safety measures as for other paints or varnishes apply like wearing of adequate protective clothing or breathing masks.

    After curing / drying the nanoparticles are firmly embedded in the coating. As with nano-enhanced paints, pristine nanoparticles are rarely released under environmental conditions (wind, rain). If some particles are being release, they immediately get in contact with other particles or form agglomerates and no individual nanoparticles occur in the air or in water.

  • Is the UV-protection in nanomaterial-containing sunscreens only effective if the nanomaterials enter the skin and how are they excreted later?

    No, to effectively act as inorganic UV-blocker (also called mineral UV-blocker) in sunscreen, the materials either in nanoform or lager just need to form a thin layer on top of the skin. If correctly applied (not on mucous membranes or injured skin) the nanomaterials cannot enter the human body and are washed off the skin surface by sweat or water.

  • Does Acrylic resin contain nanoparticles?

    Acrylic resins are particularly durable synthetic resins and are used in various adhesives, paints and coatings. Before curing, they are present as monomers in liquid form and therefore not nanoparticles. Due to the wide range of possible applications, they may contain various additives e.g. consisting of nanoparticles. However, there is no health risk associated to nanoparticles containing acrylic resins as the nanoparticles are firmly bound in both the liquid and cured form and cannot be released into the environment.

  • Can nanomaterials used in sunscreen cross the skin barrier and enter the body?

    Typically nanomaterials used in sunscreens like titanium dioxide or zinc oxide (inorganic uv-blockers) as well as the organic nanoscale UV-blockers MBBT and TBPT are not able to cross a healthy skin barrier and enter the human body if correctly applied (not on mucous membranes or wounds). Even in case of sunburnt skin, the nanomaterials stay in the upper layers (epidermis) of the skin. Therefore, in both cases no internal distribution of nanomaterials via the blood stream is to be expected.

Environment

  • Do nanomaterials harm pollinating insects?

    Pollinating insects may encounter nanomaterials via the pollen, which is contaminated via application of nanomaterial-containing pesticides or fertilizers brought out on crops, and from traffic exhaust. While laboratory studies showed that nanomaterial can be harmful to some insects, it is unclear whether the low concentrations of nanomaterials found in outdoor environments do harm pollinators.

    Read more about this topic in our cross cutting articles

  • Why are currently nanomaterial quantities in the environment mostly calculated theoretically?

    Currently, it is very difficult and tedious to directly detect engineered nanomaterials in the environment. There are still large knowledge gaps about the exposure, interactions and residence time of nanomaterials in the environment. Computer models can help to simulate such complex situation. However, this requires making certain assumptions and simplifications so that the theoretical values do not reflect the real quantities of nanomaterials in the environment. Such model calculations are a good tool for estimating risks and interactions of nanomaterials in the environment.

    For more information on this topic, please refer to the article in our cross cutting section "Estimating the occurrence of nanomaterials in the environment"

  • How efficient are nanomaterials removed from wastewater in the wastewater treatment plant?

    In the wastewater treatment plant, contaminants including nanomaterials are separated from the wastewater in several stages. According to laboratory tests, the most common nanomaterials such as silicon dioxide, titanium dioxide, silver or zinc compounds are effectively removed from the wastewater by 90-95%. Only a small fraction of nanomaterials remains in the treated water. The majority of the removed nanomaterials are found in the sewage sludge, which is further treated separately.

  • Are nanoplastics dangerous for humans and the environment?

    Due to their small size (1 nm - 1 µm), nanoplastic particles can overcome certain barriers and accumulate in organisms or environmental compartments. In addition, undesirable chemicals such as flame retardants or plasticizers can bind to the nanoplastic particles and be released later, e.g. after uptake in environmental organisms. Currently, the estimated concentration of nanoplastics in the environment is very low and has no serious impact on plants and animals.

    Microplastic (1 µm – 1 mm) particles currently pose a greater threat to humans and the environment due to higher measured environmental concentrations. Research groups around the world are currently working on this topic. It is expected that the number of microplastics as well as nanoplastic particles will strongly increase worldwide in the next decades via the gradual decomposition of plastics in the environment.

  • Are nanomaterials a threat for our wastewater treatment plants?

    No, studies to date cannot prove that nanomaterials pose a risk to our wastewater treatment plants. But a possible cause of concern is the targeted use of nanomaterials with antibacterial properties. They could kill the bacteria in the biological treatment stages. However, the amounts of nanomaterials in the wastewater and later in the sewage treatment plant are too small to disrupt the work of the bacteria in the biological purification stage.

  • How can you differentiate between natural and engineered nanoparticles in the environment?

    This is indeed a big challenge, because size and shape of natural and engineered nanoparticles may be quite similar, and mostly the natural particle outnumber the engineered ones. Hence, sophisticated analytical methods are applied, often by combining several methods, to unequivocally detect the engineered nanomaterials. For example, one uses impurities or different element or isotope ratios.

  • How can you ascertain the release of nanomaterials from products into the environment?

    Since only very small amounts of nanomaterials are found in the environment, the detection is very difficult and methodologically very demanding. The high natural background of particles complicates this even further. Moreover, since the analysis is very complex, time-consuming and expensive, synthetically engineered nanomaterials have only been detected in the environment in a few cases so far.

  • Do I need to dispose of my nanomaterial containing products in a specific way?

    No, currently there are no provisions that demand a specific disposal of nanomaterial-containing products. Liquid as well as solid waste containing nanomaterials should be disposed via the existing waste collection systems in order to prevent release into the environment. Currently there are many research activities dealing with nanomaterial fate during incineration and landfills.

     

     

  • What happens to nanomaterials after their usage for environmental remediation?

    The nanomaterials will remain within the environment. What happens there in the long term cannot easily be answered with current methods. A major obstacle is the high natural background of the respective material in the environment. This makes it hard to distinguish between natural occurring and specifically introduced nanomaterials used for remediation purposes (e.g. iron). In any case, the nanomaterials will undergo transport and transformation processes (see basics article: transport & transformation, in preparation). However, most nanomaterials do not travel very far in the environment as they have a strong tendency to bind to other particles, e.g. soil particles.

  • What are the benefits of applying nanomaterials in environmental remediation?

    Cleaning polluted water or soil from hazardous substances is time- and cost-intensive. Up-to-now the contaminated medium (water, soil) needs to be removed from the environment, cleaned, and then brought back into the original system. If a clean-up is not possible, the water or soil needs to be treated as waste, and is either burned or dumped in landfills. Here nanomaterials offer two advantages: (1) They can be directly introduced into the contaminated environment and (2) the removal of contaminants is more effective due to the higher reactivity of the nanomaterials.

    Examples for these kind of applications have been intensively studied in the BMBF-funded projects Fe-NANOSIT, NanoSan and NAPASAN.

Human body

  • Can nanomaterials enter the human body via the gastro-intestinal tract?

    Yes, but only very small amounts of nanomaterials can be taken up via the gastro-intestinal tract by penetrating tissue deeper layers and entering the blood stream. However, the overall amount is very low and most of the particles are not synthetic ones. Many minerals and other substances have a size range of about 1 to 100 nm, thus, our gastro-intestinal tract is very well adapted to handle such materials.

     

     

  • Can nanoparticles enter the body via the lung?

    Yes, it has been shown that ultrafine dust particles including nanoparticles can cross the ultrathin tissue barrier in the lung thereby entering the body via the bloodstream. However, less than one-thousandth of the initially inhaled particles actually end up in the bloodstream so the amount is negligible.

  • Can nanoparticles pass the blood-brain barrier?

    Researchers are trying to shed light on open issues such as these. In spite of intensive efforts that serve to develop treatments for e.g. brain tumors which cannot be treated otherwise, it seems to be rather difficult so far to intentionally force sufficient quantities of nanoparticles over the blood-brain barrier. In view of this fact, it is rather improbable that nanoparticles other than the specially tailored ones will pass the barrier unintentionally.

    For all that, it was found that nanoparticles can reach the brain by passing through the olfactory nerve. All experimental results obtained so far, however, indicate that the quantity of nanoparticles reaching the brain either via the blood-brain barrier or via the olfactory nerve in the olfactory epithelium of the nose is very small. Further research remains to be done to solve these issues.

  • Can nanoparticles pass the placental barrier?

    Yes this is possible. But the mechanism and what physicochemical properties of the nanoparticles affect the transfer is still largely unknown and the subject of current research.

    Please refer to the cross-cutting article "Nanoparticles at the placental barrier".

Research

  • Who is currently involved in nanosafety research and where can I find such information?

    Safety and potential risks of nanomaterials is a big research topic both on a national and international level. Our projects' section together with the project landscape offers a good overview on the involved German actors from the BMBF-funded nanosafety research projects (funding initiatives NanoCare4.0, NanoCare, NanoNature, ERA-Net SIINN). Further sources of information are e.g. the competency maps on nanotechnologies, the Environmental Research Database UFORDAT or the links section on the DaNa website. The links section lists relevant national and international networks dealing with nanotechnology topics, e.g. the European network NanoSafetyCluster.

  • How much federal funding is provided for R&D into nanotechnologies?

    In 2009, the total federal funding in Germany for R&D into nanotechnologies amounted to 382 million €, of which approximately 354 million € were contributed by the German Federal Ministry of Education and Research (BMBF).

Medicine

  • Can nanoparticles trigger allergies?

    Allergies are negative responses of the immune system towards substances that are tolerated by most people. This effect has never been observed for engineered nanomaterials. Reports about nanomaterials that are associated with a higher allergic risk are usually referring to fine dust. These ultrafine particles usually occur as components of environmental pollution, originating mainly from fire, agriculture and traffic.

    Present research focuses on simultaneous exposure towards allergens and nanoparticles. Likewise, this principle is also being explored for the development of new therapies for allergies.

     

    Literature

    Himly M., Grotz B., Sageder M., Geppert M., Duschl A. (2016). Immune Frailty and Nanomaterials: The Case of Allergies. Current Bionanotechnology, 2(1): 20-28.

  • Do silver nanoparticles help against corona viruses?

    In principle, that is true.

    The antibacterial effect of silver nanoparticles is known. This is the reason why it is used as a coating for implants or in wound dressings. The effect is based on the release of silver ions, i.e. small, electrically charged particulate matter. Silver nanoparticles have especially good properties, as they have a large surface from which these ions can be released. Scientific studies show that besides the antibacterial effect these ions act as antiviral agents as well. Laboratory tests have shown that they are effective against certain types of corona virus family. Scientists are currently investigating whether this applies to the originator of the disease COVID-19 and are looking into the use of surface coatings with silver nanoparticles in hospitals and public places.

     

    Further information can be found here:

  • Do my medications contain nanoparticles?

    Yes, drugs available in pharmacies, shops, at the doctor's or in hospitals may contain nanoparticulate ingredients because of their specific use to improve or enhance their efficacy. Both nanoparticles and liposomes are used for these purposes (see also "What is the difference between nanoparticles and liposomes?"). The number of drugs containing nanomaterials in the regulatory process is still low. These include, for example, drugs for the treatment of tumour diseases, chronic hepatitis, acromegaly (giant growth), multiple sclerosis, Crohn's disease, age-related macular degeneration (AMD) with elevated LDL-C values or type 2 diabetes (see also or crosscutting text "Nanomedicine").

    In addition to the active ingredient, drugs also contain fillers and additives such as water, starch, vaseline or highly dispersed silicon dioxide. Due to the production process, silicon dioxide nanoparticles may also be generated. At present, pharmaceutical manufacturers are not obliged to label nanoscale ingredients in their medicines.

    Further information can be found on the following websites of the European Medicines Agency (EMA)

  • What is the difference between nanoparticles and liposomes?

    Although liposomes are often referred to as nanoparticles, they differ from classical nanoparticles in both, their structure and in their stability . Liposomes are therefore not nanoparticles in a narrower sense.

    Nanoparticles are made of solid materials. Liposomes can be between a few nanometers to even 10 microns in size. They consist of certain lipids (so-called phospholipids, e.g from soy) together with other materials and form a hollow sphere consisting of one or more double membranes (bilayers - see Fig. 1, liposome with a double membrane). They are filled with water and require a water-loving environment. Their bilayers are water-loving on the outside and also inside of the hollow sphere. They are usually less stable than nanoparticles.

    The encapsulation system "nanosome" is very similar to the liposomes. Nanosomes, however, possess only a single lipid monolayer. The name refers to their extremely small size. The name Nanosome is mainly used in cosmetics.

  • How many and which medical devices contain nanomaterials?

    Nanomaterials are contained in many medical devices or applied to the surface. Examples and explanations can be found in our cross-cutting acticle on "Nanomaterials in medical devices".

    The use of nanomaterials in medical devices is clearly regulated at European level. Information on this can be found on the pages of the EUON Medical Devices at https://euon.echa.europa.eu/medical-devices.

  • How many and what kinds of nanomaterials-containing pharmaceuticals are known (to the Federal Government)?

    There is still only a very small number of pharmaceuticals that according to the relevant admission data contain nanomaterials. Among them are drugs for:

    • treatment of tumor diseases (e.g. Caelyx, Mepact, Abraxane, Rapamune, Renagel)
    • chronic hepatitis (e.g. PegIntron, Pegasys)
    • acromegaly (e.g. Somavert)
    • multiple sclerosis (e.g. Copaxone)
    • febrile neuropathy (e.g. Neulasta)
    • Morbus Crohn (e.g. Cimzia)
    • age-related macular degeneration (AMD) (e.g. Macugen)
    • increased LDL-C values and diabetes mellitus type 2 (e.g. Welchol)
    • MRT contrast agents (in-vivo diagnostics) with iron oxide nanoparticles (e.g. Feridex)
    • parenteral iron (e.g. Cosmofer, Ferrlecit)

    Besides, several authors refer to drugs containing nanoscale molecules and particles:

    • liposomes (Caelyx, Myocet)
    • polymer-protein conjugates (PegIntron, Somavert)
    • polymeric substances (Copaxone)

    Source : German Bundestag, Federal printed matter 17/3771.

  • Are there nanoparticles in flu vaccines?

    Such vaccines against flu viruses don’t contain any synthetic nanoparticles as they wouldn’t have any task. Because the contact to the antibody-producing cells is made by injecting the vaccine directly into the blood, no “fillers” are needed.

    The Paul-Ehrlich Institute (in Germany) gives the following information on its website:
    ....."Although some of the components are in a size range of nanoparticles, it is not about synthetic nanoparticles."

    https://www.pei.de/EN/medicinal-products/vaccines-human/influenza-flu/influenza-flu-node.html?cms_tabcounter=0

Legal

  • How are nanomaterials labeled in food when used ad food additives?

    In the European Union, nanomaterials, which are purposely used as food additives, have to be labeled with the suffix “nano”. This does not apply to nanomaterials that are not specifically used in food, but which may arise as byproducts during the manufacturing process.

  • Do nano-enhanced textile have to be officially registered?

    No, they do not. All chemicals including those used to enhance textile fibres are subject to the European chemicals legislation (REACH) or even stricter regulations such as the biocides' regulation and have to be approved in this context. Textiles for normal use in everyday life have neither to be tested nor approved by anyone.

    • Further information on this topic "nano in textiles" can be found in our cross-cutting section!!!

  • Do nanopesticides need approval before use?

    Yes, the EU Biocidal Products Regulation has specific provisions for nanomaterials. These provisions apply for active and non-active substances. If a nanoform of an already approved pesticide shall be used, the nanoproduct needs extra approval by submitting a dossier with all required data.

  • Where can I find answers to legal questions about the use of nanomaterials?

    With nanotechnology being a cross-sectional technology, the nano-specific aspects are being addressed in various European directives and regulations. These include the legal areas of chemicals, food & food contact materials, pesticides and biocides, cosmetics, pharmaceuticals, medical devices, occupational health & safety and environmental protection.

    The website of the German Federal Institute for Occupational Safety and Health (BAuA) provides information on regulations and preannouncements for workplace safety. The BAuA announcement "Manufactured Nanomaterials" (BekGS 527) from 2013 contains assessment values for the safe use of nanomaterials at the workplace. REACH, the European regulation on the Registration, Evaluation, Authorisation and Restriction of Chemicals, also includes the nanoform of substances without specifically addressing and assessing the nanoform yet. Since 2013 and 2014 respectively, regulations of cosmetics, biocides and food legislation include labelling requirements for nanosized ingredients. Further information on nano-specific regulations can be accessed via the following links

    Germany

    Switzerland

    • Federal Office of Public Health (FOPH) – Current Law

    Austria

     

     

  • What does it really mean when behind ingredients of cosmetics or foods the imprint “nano” appears?

    For a better information of the consumers since Jul 2013 (cosmetics) and Dec 2014 (food) it is regulated by law (EU), that not only "titanium dioxide" is in the list of ingredients, but also the information is added, whether this is nanoscale [titanium dioxide (nano)]!

    Also regulated by law is that only safe and approved ingredients may be included in cosmetics and foods, which have been sufficiently tested for possible negative effects. Therefore, this is by no means a threat notice, but only an information about the ingredients!

  • Are nanomaterials required to be licensed?

    This depends on where they are to be used. For some product groups, the handling of nanomaterials is regulated very precisely:

    Cosmetics

    Dyes, preservatives and organic /inorganic UV-blockers may only be used in cosmetics if they have undergone a safety assessment and are explicitly approved for the respective application. This also applies if they are available as nanomaterials. Additional requirements then apply to the safety assessments. If nanomaterials are to be used for other purposes, they do not have to be specifically approved, but must be notified to the EU Commission. This notification also includes all information on size and coating for the respective application, properties, toxicological profile and safety data. In both cases, the Commission thus knows in which particle size, purity and composition as well as with which coatings or impurities the nanomaterials are used in cosmetics. Substances which have not been authorised or registered in this way are prohibited for all types of cosmetic products.

    Food

    Nano-ingredients for food must always be approved. If it is a completely new, previously unused ingredient that is considered a "technically produced nanomaterial" within the meaning of the law, this ingredient must be specially evaluated and approved. The same applies to food additives: whether nanomaterials or not - additives may only be used after prior testing and approval and only for precisely defined applications in food. This also applies to additives that have already been authorised. If such a substance is produced differently (e.g. nano-small) or used with a new function, it is considered to be a completely new substance and must undergo the approval procedure again from the outset. So far, there are no approved nano-ingredients on the European market.
    So-called nanocapsules are often used in food supplements to keep vitamins and minerals dissolved or to transport them to the correct place in the body. However, these nanocapsules are not independent additives, but structures that form due to the chemical properties of their components. They have neither new properties nor their own biological effect and are therefore not considered nanomaterials by law. However, the "building blocks" from which they are formed are approved food additives.

    Packaging

    In plastics for materials intended to come into contact with food - packaging, storage containers, pots, refrigerator interiors, etc. - nanomaterials can only be used if they have been tested for safety and approved for the application in question. But even for food contact materials that are not made of plastic, manufacturers must in any case ensure that they do not release any substances into the food and pose a risk to health. They must therefore also keep an eye on nanomaterials and their behaviour. Antibacterial coatings made of nano-silver for foils and tableware, which are occasionally advertised on the Internet, are then not permitted in the EU.

    Biocides

    Products that are intended to be effective against microorganisms and pests must undergo an approval procedure in the EU. The approval then applies to the active substance and its specific use, and additional safety requirements may be imposed (labelling, warning, etc.). Nanomaterials need their own approval, even if the active substance has already been approved in its larger version. In addition, the biocidal products, as they are ultimately to be used, must also be tested and authorised as a whole. For this purpose, the effects of the product on humans, animals and the environment are investigated and evaluated. If a product contains nanomaterials, these effects must be determined specifically using methods that have been proven to do justice to the special properties of nanomaterials.

    Other product groups

    Drugs and medical devices undergo very complex and extensive safety tests. Although there are no nano-rules of their own, the existing approval procedures also cover them. There are no special approval procedures for textiles, materials, paints and all other product groups. Here too, however, manufacturers must ensure that their products are safe in the intended and foreseeable application.

    In the EU, all chemicals must be registered, evaluated and authorised for use in Europe. This has also applied to nanomaterials since 2020. The registrant must carry out a risk assessment for humans and the environment for the respective registered forms. All actors within the supply chain, both registrants and downstream users, who are subject to the REACH regulation must collect and forward specific data for the nanoscale substances.

  • Is it nano when the label says it is?

    Many companies promote their products as “nano” because nanotechnology is in vogue today: Software companies, for instance, offer “nanotools”, i.e. small additional programs that adapt existing software to the special needs of computer users. Tata “Nano” is a very small car manufactured by the Indian vehicle manufacturer Tata Motors. Car washs praise their “nano” polishes which contain finest substances for extra-brilliant finishes.

    For all that, nanomaterials are not always used or contained in the respective products. Only cosmetics, food and biocides are obliged to label nanomaterials. In the list of ingredients, "(nano)" then appears behind the name of the respective substance. The conditions under which manufacturers may voluntarily advertise with "nano", however, are not regulated.

    A "nano-notice" on the display side of packaging or in advertising may primarily be there to attract attention. Nevertheless, it can certainly be true. Industry and research have been doing experiments with very small structures for many years without necessarily having systematically developed them as "nanomaterials" in the sense of legal definitions. For example, nano-polishes for cars work by forming nano-fine surface structures after application. Micelles and liposomes, which encapsulate active ingredients in cosmetics and dietary supplements and keep them soluble, are also nano-small, but are produced solely by the chemical properties of their building blocks. And for many years titanium dioxide has been used as a finely ground inorganic (also called mineral) sunscreen, before it became subject to labelling.

  • What are the legal requirements for nanomaterials?

    In Germany and at European and international level there are no specific legal requirements on nanotechnology. Chemicals (this includes nanomaterials) are subject to the Chemicals Act, and the safety and health protection of employees at the workplace is subject to the Occupational Health and Safety Act.

    In addition, since 1st July 2008 the European chemicals legislation REACH has provided a framework for the registration of nanomaterials. Research projects are being carried out to determine whether there is a need for specific action.

    Since 2013, nanomaterials must be labelled in cosmetic products. From EU Regulation No. 1223/2009: "All components in the form of nanomaterials must be clearly listed in the list of components. The designation of such ingredients must be followed by the word "nano" in brackets."

    Since 13.12.2014, this also applies to the food industry: From EU Regulation No. 1169/2011: "All ingredients present in the form of technically produced nanomaterials must be clearly listed in the list of ingredients. The designation of such ingredients must be followed by the word "nano" in brackets."

Material properties

  • Is there a change in flammability and explosiveness of a material in its nanoform?

    Yes. Hazardous properties like flammability or explosiveness of certain substances or materials also apply to their nanoform. Here the material reacts with the oxygen from the air (oxidization) and releases energy in form of radiation / heat or as a shock wave (explosions). Especially oxidable metals and metal powders have this pyrophoric (spontaneous combustion) property.

    The smaller the particle size of a flammable substance is, the easier it is to ignite the material thereby increasing its flammability. Nanomaterials have a lower ignition temperature compared to microscale particles and can be oxidized faster due to the higher specific surface area. The same is true for the explosiveness of flammable powdered nanomaterials. First the flammable nanomaterials and their respective agglomerates have to be finely distributed in the air (dust formation). Then, the air-nanomaterial-mixture is ignited resulting in an explosion. Usually, significantly less minimum energy is required to ignite nanoscale materials compared to their macroscale form.

    Standardised testing methods like DIN EN 13501 are used to assess the flammability o different materials. In 2016, a new ISO standard was published for the testing of explosive materials (ISO/IEC 80079-20-2:2016).

    Further information on this topics can be found online:

     

  • How can it be explained that nanoparticles change their optical properties?

    Question: "Why, for example, are titanium dioxide nanoparticles transparent once they have reached a certain size?"

    This is due to a physical effect. Any object that is clearly smaller than the wavelength of the visible light is invisible. Visible light is composed of wavelengths in the range of approximately 380 – 790 nanometers.

    Particles that measure e.g. 100 nanometers are not visible anymore. This, however, happens only under extraordinary conditions: As soon as several particles are found one in front of or beside the other, they (normally) take on a white color and become visible again due to e.g. diffraction or dispersion. In spite of this, not all of the particles’ chemical and physical properties change at the nanolevel. Absorption properties, for example, persist i.e., the particles do not reflect light anymore, thus are transparent but actually absorb UV radiation.

Sustainability

  • What is a life cycle assessment?

    A life cycle assessment (LCA; also called ecobalance) is a method for analysing environmental impacts of a product or service that considers the entire life cycle, starting with the procurement of the raw material, through processing, distribution, use and end-of-life disposal. A life cycle analysis calculates in detail for a product or service the energy and resource use and the potential health and environmental impacts. For this purpose, various indicators such as energy and raw material consumption or the release of pollutants are taken into account. Life cycle analysis can be used, for example, to determine which of two products uses fewer resources or which is more environmentally friendly. There are different types of life cycle analysis, which, among other things, consider different phases of the life cycle of a product. One aspect, for example, is the calculation of the carbon footprint.

    The ISO 14044:2006 standard specifies certain requirements and provides guidelines for life cycle analysis.

  • What means circular economy?

    In the linear economy, also called the "throwaway economy", large parts of the raw materials used are landfilled or incinerated after the respective use phase of products. In contrast to that, the circular economy is designed to recycle a large part of the raw materials used after product usage, or to extend the use phase of a product through durable construction. Other measures include reducing emissions and energy use, maintenance, repair and reuse. Recycling is seen as the last means of choice in the circular economy.

  • How are sustainability and climate change connected?

    A sustainable life style helps to protect the climate. The mere use of public transport or the bicycle instead of the car by individuals saves a large amount of CO2. In addition, many more people can be transported at the same time by bus or train. Replacing old appliances with modern ones with high energy efficiency classes provides enormous energy savings (e.g. light bulbs with LED lighting). Innovative materials make it possible to generate renewable energy, for example. Hydrogen produced in this way (green hydrogen) can contribute to modern mobility.

  • Can innovative materials stop climate change?

    In addition to measures such as reforestation or moorland rewetting, material innovations are an instrument against climate change. Innovative materials in products such as solar cells or batteries, for example, can help to ensure that more solar energy is converted into electricity, regenerative energies are better stored, fewer raw materials are used and overall fewer climate-damaging emissions are produced. Combined with improved recycling strategies, these measures help to slow down climate change. But this can only succeed in connection with further societal transformation processes (e.g. mobility, urban development).

  • What is the importance of recycling for sustainability?

    Recycling is the process of reprocessing discarded reusable materials into a new product. By collecting, separating and recycling reusable materials, raw materials are recovered and resources are conserved. The recovered raw materials can be used for the production of new products and waste is avoided. However, recycling is only truly sustainable when the raw materials can be recovered with as little energy input as possible, and the resulting material is of high purity. For the sustainability of a product, the reduction of raw material use in production and a longer service life have a higher significance.

  • The concept of safe and sustainable design – relevant for innovative materials?

    There is still no generally accepted definition of the SSbD concept (Safe and substainable by Design). In general, the SSbD concept applies to chemicals, materials, products and processes and thus also to innovative materials. The concept aims to integrate safety, recyclability and functionality of chemicals and materials, with the overall objective of minimising environmental impacts throughout their life cycle and along the entire value chain. The SSbD concept is currently being further developed and specific criteria for SSbD of chemicals and materials defined.

    In this way, the SSbD concept supports the vision of the EU Chemicals Strategy for Sustainability (CSS). The aim of this strategy is to produce and use chemicals in a way that maximises their benefits to society while avoiding harm to the planet and people.

     

    Source: European Commission, Joint Research Centre, Caldeira, C., Farcal, R., Moretti, C., et al., Safe and sustainable by design chemicals and materials : review of safety and sustainability dimensions, aspects, methods, indicators, and tools, Publications Office of the European Union, 2022, https://data.europa.eu/doi/10.2760/879069

  • What are planetary boundaries?

    Planetary Boundaries describe a concept that defines nine environmental boundaries for our planet: Climate Change, New Substances and Modified Life Forms, Stratospheric Ozone Loss, Atmospheric Aerosol Content, Ocean Acidification, Biogeochemical Fluxes, Freshwater Use, Land Use Change and Biosphere Intactness.

    Human-induced perturbations of Earth systems (e.g. increase in atmospheric CO2, ocean acidification) are calculated and visualised for each of the boundaries. As long as humans operate within the stress limits, humanity act within a "safe operation space". Crossing one or more planetary boundaries carries the risk of abrupt environmental changes that can be harmful or even catastrophic.

    Within the concept of planetary boundaries, economic systems and societies are embedded in the biosphere and therefore depend on its preservation. It sees the economy as an integral part of our society that must develop exclusively within planetary boundaries. Four planetary boundaries are defined as non-negotiable, namely: drinking water, climate, biodiversity and oceans. Therefore, according to the concept, sustainability goals 6 (water), 13 (climate), 14 (aquatic life) and 15 (terrestrial life) are of fundamental importance.

Education

  • What types of education exist for the field of nanotechnology?

    Nanotechnology is used in a wide range of industrial sectors either manufacturing or applying nanoproducts. These include the sectors chemistry, electronics, mechanical engineering and pharmacology. For the company-based vocational training, relevant aspects of nanotechnology are incorporated within existing training professions, which may vary depending on the industry.

    In Higher Education (college, university), there are a number of different nano-related courses for bachelor, master and doctoral degree programs. In addition to the nano-specific topics nanotechnology, nanoscience, nanomaterials or nano-biotechnology, this topic is also being addressed by other disciplines like chemistry, physics, materials sciences, biology and related application areas. In order to get a job in this field, a special course of studies on nanotechnology might be interesting but is not required in principle.

     

    Further information on education possibilities for nanotechnology can be found on various online portals, e.g.

     

     

Public debate

  • How much federal funding has been provided in the period from 2009 to 2012 for safety research in the field of nanotechnology?

    The German Federal Ministries of Education and Research (BMBF), Environment - Nature - Conservation and Nuclear Safety (BMUB), Labour and Social Affairs (BMAS), and Food - Agriculture and Consumer Protection (BMEL) have been spending approximately 14.18 million € per year on risk research projects and supporting research.

  • What´s the opinion of the EU on nanotechnology?

    The EU sees nanotechnology as one of the leading technologies. See also the Lund Declaration from July 2009 "The Lund Declaration: EUROPE MUST FOCUS ON THE GRAND CHALLENGES OF OUR TIME (PDF-Document, 105 KB [icon type=file-pdf]).

     

  • How does the chemical industry participate in the social debate on nanotechnology?

    The chemical industry is contributing to the social debate on nanotechnology in two ways: by providing information and by engaging in dialogues. Employees present their own research results to the public at conferences and in publications. Some companies inform about topics like work protection or about a nanotechnology code of conduct (EU-Codex [icon type=file-pdf]) on their websites.

    The chemical industry is proactive on possible concerns and worries of people regarding their products. It participated with own works in research projects like NanoCare, INOS and TRACER and is involved in the public dialogue. The industry also takes part in other ongoing research projects like Carbosafe.

  • Does a moratorium make sense?

    Question: "Is it reasonable to call for a regulation that prohibits further research on nanotechnology?"

    Not from the point of view of DaNa and the NanoCare Cluster. There are indeed still some knowledge gaps, but that is this way with every new area of research. These gaps will be closed by the new findings from the numerous national, European and international projects. In our opinion there are so many positive aspects to nanotechnology (i.e. in the medical sector or in the protection of the environment.) that a moratorium would be contra productive.

    As many processes in nature take place on the nanoscale, research on nanotechnology will lead to a better understanding of these natural processes. Advances in medicine would be very difficult if research on nanotechnology was not allowed any more. Of course the intended goals of every single project have to be validated. Ethically dubious projects are rejected by most scientists and all sponsors.

    For the nanotechnologists their science is just like any other: what matters are the people working in this field and what they make of it.

Other

  • How can I protect myself from nanoparticles?

    As nanoparticles are omnipresent in the natural environment, one cannot really protect oneself from them in daily life and dust masks help only partially. Up to 10,000 naturally occurring nanoparticles per cubic centimeter fly around in clean air. The smoke of one cigarette increases the amount of these particles to over 100,000 in the surrounding area. The natural nanoparticles derive from dust storms (e.g. in the Sahara), forest fires, volcanic eruptions, etc., and can be transported over large distances. Normally, this is nothing to worry about, because our body can handle these nanoparticles. Yet, in principle, protection is possible: In the nanoparticle industry, employers must provide appropriate protective equipment (fume hoods, clothing, masks with "nano-filters") to ensure that employees are not endangered. For best possible protection, the maximum allowable values are reviewed annually.

  • Is cell phone radiation nanoparticulate?

    No. It is electromagnetic.

Skip to content